Chapitre 3 – Barycentres

Exercice 1.

Soit A, B, P trois points distincts du plan tels que $P \in [AB]$. Écrire P comme barycentre de A et B avec des coefficients s'écrivant en fonction des distances PA et PB.

Exercice 2.

Constructions à la règle et au compas

Soient $A,\ B$ deux points du plan. Construire les points suivants :

- 1. G_1 barycentre de (A,1) et (B,1)
- 2. G_2 barycentre de (A,1) et (B,2)
- 3. G_3 barycentre de (A,5) et (B,7)
- 4. G_4 barycentre de (A, -1) et (B, 1)
- 5. G_5 barycentre de (A, -3) et (B, 2)
- 6. G_6 barycentre de (A, -3) et (B, -2)

Exercice 3.

Constructions à la règle et au compas (bis) Soient A, B et C trois points du plan. Construire les points suivants :

- 1. G_1 barycentre de (A,1), (B,1) et (C,1)
- 2. G_2 barycentre de (A, 2), (B, 3) et (C, 4)
- 3. G_3 barycentre de (A, -5), (B, 2) et (C, 2).

Exercice 4.

Soient A,B,C trois points du plan non alignés. Les droites (AB), (BC) et (AC) délimitent 7 zones du plan. Indiquer à quelle zone du plan appartient le barycentre de (A,α) , (B,β) et (C,γ) selon les signes de α , β et γ .

Exercice 5.

Soit un triangle ABC, montrer que les trois médianes de ABC sont concourantes en le point G, isobarycentre de A, B et C. De plus, si A' est le milieu de [BC], on a $AG=\frac{2}{3}AA'$.

Exercice 6.

Soit ABC un triangle et soit G son centre de gravité. Déterminer le lieu des points M du plan tels que $\overrightarrow{MAMB} + \overrightarrow{MC}$ est colinéaire à \overrightarrow{AB} .

Exercice 7.

Soient A(2,-5), B(1,2), C(3,4) et D(-1,-1) dont les coordonnées cartésiennes sont données dans un repère (O,I,J). Soit G le barycentre de (A,1), (B,2), (C,3) et (D,1).

Déterminer les coordonnées de G dans le repère (O, I, J).

Exercice 8.

Soit ABCD un quadrilatère. Construire le point G isobarycentre de A, B, C et D.

Exercice 9.

Soit ABC un triangle et soit G son centre de gravité. On note G' le symétrique de G par rapport au milieu de [BC]. Déterminer les coordonnées barycentriques de G par rapport à [BC].

Exercice 10.

Soit ABCD un carré. Déterminer l'ensemble des points M du plan tels que

$$\|2\overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC}\| = \|AB\|$$

Exercice 11.

Dans le triangle ABC, E est le milieu de [AB] et G est le barycentre de (A,-2), (B,-2) et (C,15). Démontrer que G, C et E sont alignés .

Exercice 12.

- 1. Montrer que le centre du cercle inscrit a pour coordonnées barycentriques (a,b,c) relativement à A,B et C.
- 2. Montrer que l'orthocentre a pour coordonnées barycentriques $(\tan \hat{A}, \tan \hat{B}, \tan \hat{C})$ relativement à A, B et C.
- 3. Montrer que le centre du cercle circonscrit a pour coordonnées barycentriques $(\sin 2\widehat{\mathbf{A}}, \sin 2\widehat{\mathbf{B}}, \sin 2\widehat{\mathbf{C}})$ relativement à A, B et C.

Exercice 13.

Soit (A, B, C) un repère du plan. Soit (CD) une droite du plan. Soit M dont les coordonnées barycentriques par rapport à A, B et C sont [x, y, z].

1. Montrer qu'il existe $a, b, c \in \mathbb{R}$ tels que

$$M \in (CD) \iff ax + by + cz = 0$$

(On dit que ax+by+cz=0 est une équation barycentrique de (CD))

2. Déterminer une équation barycentrique de la droite (AB) où les coordonnées cartésiennes de A et B sont A(1,5) et B(3,9).

Exercice 14.

Montrer que trois droites du plan dont les équations barycentriques sont ax+by+cz=0, a'x+b'y+c'z=0 et a''x+b''y+c''z=0, sont concourantes ou parallèles si, et seulement si,

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 0$$

Exercice 15.

On considère $P \in \mathbb{C}[X]$. On note $(a_i)_{1 \leq i \leq r}$ ses racines et, pour tout $0 \leq i \leq n$, A_i désigne le point d'affixe a_i . Montrer que toutes les racines du polynôme P' sont contenues dans l'enveloppe convexe des $(A_i)_{1 \leq i \leq n}$.

 $\begin{array}{c} \textit{Indication}: \textit{on pourra commencer par décomposer} \\ \textit{la fraction} \ \frac{P'}{P} \ \textit{en éléments simples}. \end{array}$

Exercice 16. Théorème de Ménélaüs

Soit ABC un triangle. Soient M, N, P trois points appartenant respectivement aux droites (BC), (CA) et (AB) distincts des sommets A, B, C du triangle. Alors M, N et P sont alignés si, et seulement si,

$$\frac{\overline{MB}}{\overline{MC}} \times \frac{\overline{NC}}{\overline{NA}} \times \frac{\overline{PA}}{\overline{PB}} = +1.$$

Exercice 17. Théorème de Céva

Soit ABC un triangle. Soient A', B', C' trois points appartenant respectivement (BC), (CA) et (AB) distincts des sommets A, B, C du triangle. Alors les droites (AA'), (BB') et (CC') sont parallèles ou concourantes si, et seulement si,

$$\frac{\overline{A'B}}{\overline{A'C}} \times \frac{\overline{B'C}}{\overline{B'A}} \times \frac{\overline{C'A}}{\overline{C'B}} = -1.$$

