

Automatismes Première Semaine 5

Voir la correction

• Résoudre dans $\mathbb R$ l'équation (x-3)x=(x-3)(3x+1)

- Résoudre dans $\mathbb R$ l'équation $\ (x-9)^2-13=0$

Voir la correction

• Résoudre dans $\mathbb R$ l'équation (x-1)(x+3)=(x-1)(3x+2)

• Résoudre dans $\mathbb R$ l'équation $5x^2=3x$

Voir la correction

• Résoudre dans $\mathbb R$ l'équation $x^2-4x+4=0$

• Résoudre dans $\mathbb R$ l'équation (x+3)(2x-1)=x+3

Voir la correction

• Résoudre dans $\mathbb R$ l'équation $2(x-1)^2-3=0$

• Résoudre dans $\mathbb R$ l'équation $(x-1)^2+1=0$

Solutions

Revenir à l'énoncé

• Soit $x \in \mathbb{R}$.

$$(x-3)x = (x-3)(3x+1)$$

$$\iff (x-3)x - (x-3)(3x+1) = 0$$

$$\iff (x-3)(x-(3x+1)) = 0$$

$$\iff (x-3)(x-3x-1) = 0$$

$$\iff (x-3)(-2x-1) = 0$$

$$\begin{aligned} x-3 &= 0 & \text{ou} & -2x-1 &= 0 \\ \Longleftrightarrow x &= 3 & \text{ou} & x &= -\frac{1}{2} \end{aligned}$$
 Ainsi, $\mathcal{S} = \left\{3\,; -\frac{1}{2}\right\}.$

• Soit $x \in \mathbb{R}$.

$$(x-9)^2 - 13 = 0$$

$$\iff ((x-9))^2 - \sqrt{13}^2 = 0$$

$$\iff (x-9) - \sqrt{13} (x-9) + \sqrt{13}$$

$$\iff (x-9 - \sqrt{13}) (x-9 + \sqrt{13})$$

D'après la règle du produit nul,
$$x-9-\sqrt{13}=0 \qquad \text{ou} \qquad x-9+\sqrt{13}=0 \\ \Longleftrightarrow x=9+\sqrt{13} \qquad \text{ou} \qquad x=9-\sqrt{13} \\ \mathcal{S}=\left\{9+\sqrt{13}\,;9-\sqrt{13}\right\}.$$
 Ainsi,
$$\mathcal{S}=\left\{9+\sqrt{13}\,;9-\sqrt{13}\right\}.$$

Revenir à l'énoncé

• Soit $x \in \mathbb{R}$.

$$(x-1)(x+3) = (x-1)(3x+2)$$
 $\iff (x-1)(x+3) - (x-1)(3x+2) = 0$
 $\iff (x-1)((x+3) - (3x+2)) = 0$
 $\iff (x-1)(x+3-3x-2) = 0$
 $\iff (x-1)(-2x+1) = 0$

$$\begin{aligned} x-1 &= 0 & \text{ou} & -2x+1 &= 0 \\ \Longleftrightarrow x &= 1 & \text{ou} & x &= \frac{1}{2} \end{aligned}$$
 Ainsi, $\mathcal{S} = \left\{1; \frac{1}{2}\right\}$.

• Soit $x \in \mathbb{R}$.

$$5x^{2} = 3x$$

$$\iff 5x^{2} - 3x = 0$$

$$\iff x(5x - 3) = 0$$

$$x=0$$
 ou $5x-3=0$ $\Leftrightarrow x=0$ ou $x=\frac{3}{5}$ Ainsi, $\mathcal{S}=\left\{0\,;\frac{3}{5}\right\}$.

Revenir à l'énoncé

• Soit $x \in \mathbb{R}$.

$$x^2 - 4x + 4 = 0$$

$$\iff (x - 2)^2 = 0$$

D'après la règle du produit nul, x-2=0, ce qui équivaut à x=2. Ainsi, $\mathcal{S}=\{2\}$.

• Soit $x \in \mathbb{R}$.

$$(x+3)(2x-1) = x+3$$

$$\iff (x+3)(2x-1) - (x+3) = 0$$

$$\iff (x+3)((2x-1)-1) = 0$$

$$\iff (x+3)(2x-2) = 0$$

$$x+3=0$$
 ou $2x-2=0$
 $\iff x=-3$ ou $x=1$
Ainsi, $S=\{-3:1\}$.

Revenir à l'énoncé

• Soit $x \in \mathbb{R}$.

$$2(x-1)^2 - 3 = 0$$

$$\iff \left(\sqrt{2}(x-1)\right)^2 - \sqrt{3}^2 = 0$$

$$\iff \left(\sqrt{2}(x-1) - \sqrt{3}\right)\left(\sqrt{2}(x-1) + \sqrt{3}\right) = 0$$

 $\sqrt{2}(x-1) + \sqrt{3} = 0$

 $\sqrt{2}(x-1) = -\sqrt{3}$

 $x - 1 = -\sqrt{\frac{3}{2}}$

 $x = 1 - \sqrt{\frac{3}{5}}$

D'après la règle du produit nul,
$$\sqrt{2}(x-1)$$

$$\sqrt{2}(x-1) - \sqrt{3} \qquad \text{ou}$$

$$\iff \sqrt{2}(x-1) = \sqrt{3} \qquad \text{ou}$$

$$\iff x-1 = \sqrt{\frac{3}{2}} \qquad \text{ou}$$

$$\Longleftrightarrow x = 1 + \sqrt{\frac{3}{2}} \qquad \text{ou}$$
 Ainsi, $\mathcal{S} = \left\{1 - \sqrt{\frac{3}{2}}; 1 + \sqrt{\frac{3}{2}}\right\}$.

• Soit $x\in\mathbb{R}$. On sait que $(x-1)^2\geqslant 0$. Par conséquent, $(x-1)^2+1>0$ donc l'équation n'admet aucune solution.

