

Chapitre 5 Limites de fonctions

Table des matières

1	Limites de sommes, de produits et de quotients de fonctions	2
2	Limites de fonctions polynômes	3
3	Limites de fonctions exponentielles	3

1 Limites de sommes, de produits et de quotients de fonctions

Lorsque l'on connaît les limites de deux fonctions f et g, on peut parfois en déduire la limite de f+g, de $f\times g$ et de $\frac{f}{g}$. On utilise les tableaux suivant :

Proposition 1

Soient f et g deux fonctions et l et l' deux nombres réels.

Limite	Limite	Limite
de f	de g	de f + g
l	l'	l + l'
l	$+\infty$	$+\infty$
l	$-\infty$	$-\infty$
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$+\infty$	FI^*
$+\infty$	$-\infty$	FI

Limite	Limite	Limite
de f	de g	$de f \times g$
l	l'	$l \times l'$
$\pm \infty$	$\pm \infty$	$\pm \infty$
$l \neq 0$	$\pm \infty$	$\pm \infty$
0	$\pm \infty$	FI

Limite	Limite	Limite
de f	de g	$de \frac{f}{g}$
l	$l' \neq 0$	$\frac{l}{l'}$
l	$\pm \infty$	0
0	$l \neq 0$	0
$\pm \infty$	$l \neq 0$	$\pm \infty$
$\pm \infty$	$\pm \infty$	FI
0	0	FI

*FI signifie « Forme Indéterminée » : les règles de sommes, de produits et de quotients ne permettent pas de conclure. Il faut donc utiliser d'autres propriétés pour déterminer la limite.

Exemple.

On sait que $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} 3x = +\infty$. On en déduit que $\lim_{x \to +\infty} (x^2 + 3x) = +\infty$.

2 Limites de fonctions polynômes

A priori, si l'on veut calculer $\lim_{x\to+\infty}x^2-3x$, il s'agit d'une forme indéterminée $+\infty-\infty$. Néanmoins, on peut déterminer la limite en utilisant la propriété suivante :

Proposition 2

La limite d'une fonction polynôme en $+\infty$ ou $-\infty$ est la limite de son terme de plus haut degré.

Remarque.

Attention, cette règle ne s'applique que lorsque x tend vers $+\infty$ ou vers $-\infty$.

•
$$\lim_{x \to +\infty} -3x^6 + 7x^4 - 17x + 4 = \lim_{x \to +\infty} -3x^6 = -\infty$$

•
$$\lim_{x \to +\infty} -3x^6 + 7x^4 - 17x + 4 = \lim_{x \to +\infty} -3x^6 = -\infty$$

• $\lim_{x \to -\infty} -3x^6 + 7x^4 - 17x + 4 = \lim_{x \to -\infty} -3x^6 = -\infty$

Limites de fonctions exponentielles 3

Proposition 3 - (rappel)

$$\bullet \lim_{x \to +\infty} e^x = +\infty$$

•
$$\lim_{x \to -\infty} e^x = 0$$

On souhaite déterminer la limite en $+\infty$ de la fonction f définie par $f(x) = \frac{e^x}{x}$. A priori, la règle des limites de quotients donne une forme indéterminée $\frac{+\infty}{+\infty}$. Néanmoins, on peut conclure avec la propriété suivante :

Proposition 4 - (admise)

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

•
$$\lim_{x \to +\infty} x e^{-x} = 0$$

Proposition 5 – (admise)

Soit P une fonction polynôme.

•
$$\lim_{x \to +\infty} \frac{e^x}{P(x)} = +\infty$$

•
$$\lim_{x \to +\infty} P(x)e^{-x} = 0$$

Remarque.

De manière imagée:

« L'exponentielle l'emporte sur x et sur n'importe quelle puissance de x ».