

Chapitre 7 Fonctions affines

Table des matières

1	Fonctions affines, fonctions linéaires et fonctions constantes	2
2	Coefficient directeur et ordonnée à l'origine	4
3	Variations et signe d'une fonction affine	7
	3.1 Variations d'une fonction affine	7
	3.2 Signo d'une fonction affine	7

1 Fonctions affines, fonctions linéaires et fonctions constantes

Définition 1

Une fonction affine est une fonction de la forme

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & mx+p \end{array} \right.$$

où m et p sont des réels.

Définition 2

Une fonction linéaire est une fonction de la forme

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & mx \end{array} \right.$$

où m est un nombre réel.

Définition 3

Une fonction constante est une fonction de la forme

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & p \end{array} \right.$$

où p est un nombre réel.

Exemples.

- La fonction f définie sur \mathbb{R} par f(x) = 3x 2 est une fonction affine avec m = 3 et p = -2.
- La fonction g définie sur \mathbb{R} par g(x) = -x est une fonction linéaire avec m = -1.
- La fonction h définie sur \mathbb{R} par h(x) = 2 est une fonction constante avec p = 2.

Proposition 1

- Si f est une fonction linéaire, alors f est une fonction affine.
- Si f est une fonction constante, alors f est une fonction affine.

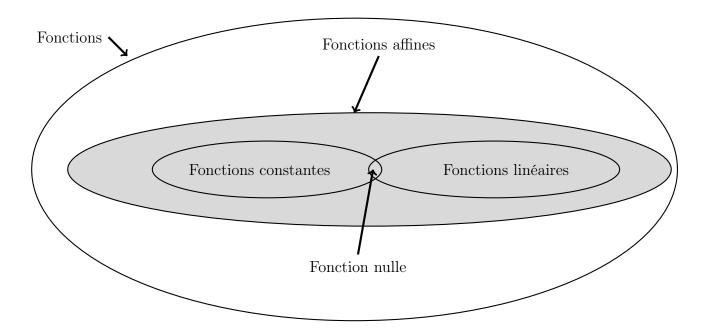
Démonstration.

- Si f(x) = mx, alors f(x) = mx + 0. Si f est linéaire, f est donc une fonction affine avec p = 0.
- Si f(x) = p, alors f(x) = 0x + p. Si f est constante, f est donc une fonction affine avec m = 0.

Vincent Windows

Remarque.

Le diagramme ci-dessous représente la situation d'inclusion des ensembles de fonctions :



Proposition 2

Si f est une fonction affine, alors sa courbe représentative est une droite.

Démonstration.

Soit f une fonction affine définie par f(x) = mx + p.

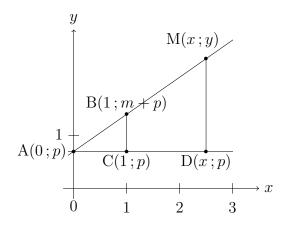
On suppose que $m \ge 0$ (le cas m < 0 se traite de la même manière).

Comme f(0) = p et f(1) = m + p, les points A(0; p) et B(1; m + p) appartiennent à la courbe représentative de f que l'on notera C_f .

L'objectif est de démontrer que C_f est la droite (AB).

Pour cela, on considère un point $M(x;y) \in (AB)$. On va montrer que $M \in C_f$, c'est-à-dire que y = mx + p.

On suppose que x > 0 (là aussi, le cas x < 0 se traite de la même manière). On note C(1; p) et D(x; p).



On, sait que : dans le triangle ADM, $B \in (AM)$ et $C \in (AD)$.

De plus, les droites (BC) et (MD) sont paralléles.

On utiliser le théorème de Thalès.

On peut conclure que:

$$\frac{AC}{AD} = \frac{BC}{MD}.$$

Par conséquent,
$$\frac{1}{x} = \frac{m}{y-p}$$

donc $y-p = xm$
donc $y = mx + p$

Ainsi, on a bien montré que y = mx + p, ce qui signifie que $M(x;y) \in (AB)$.

En conclusion, on a prouvé que tout point de la droite (AB) appartient à la courbe C_f . Réciproquement, comme il ne peut pas y avoir deux points de la courbe C_f ayant la même abscisse, cela signifie que C_f ne contient pas d'autres points que ceux de la droite (AB).

Finalement, cela prouve que la courbe C_f est exactement la droite (AB).

Proposition 3

- Si f est une fonction constante, alors sa courbe représentative est une droite parallèle à l'axe des abscisses (Ox).
- \bullet Si f est une fonction linéaire, alors sa courbe représentative est une droite passant par l'origine du repère.

Démonstration.

Les fonctions linéaires et les fonctions constantes sont des cas particuliers de fonctions affines. D'après la propriété 3, leur représentation graphique est donc une droite.

De plus, si f est une fonction linéaire définie par f(x) = mx, on a $f(0) = m \times 0 = 0$ donc la courbe de f passe bien par l'origine O(0;0).

2 Coefficient directeur et ordonnée à l'origine

Définition 4

Soit f une fonction affine définie par f(x) = mx + p.

- m est appelé le **coefficient directeur** de f ou encore la **pente** de f.
- p est appelé **ordonné à l'origine** de f.

Proposition 4

Soit f une fonction affine définie par f(x) = mx + p. Pour tous $a, b \in \mathbb{R}$,

$$\frac{f(b) - f(a)}{b - a} = m.$$

Démonstration.

On a f(a) = ma + p et f(b) = mb + p. Ainsi,

$$\frac{f(b) - f(a)}{b - a} = \frac{(mb + p) - (ma + p)}{b - a}$$

$$= \frac{mb + p - ma - p}{b - a}$$

$$= \frac{m(b - a)}{b - a}$$

$$= m$$

Remarque.

Si b - a = 1, alors f(b) - f(a) = m. Autrement dit, lorsque deux nombres sont espacés de 1 unité sur l'axe des abscisses, leurs images sont espacés de m unités sur l'axe des ordonnées.

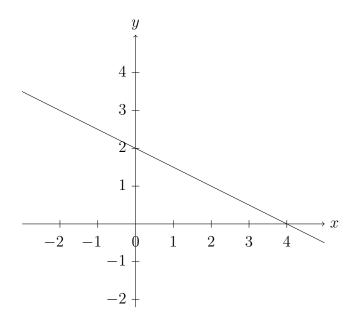
- Si m > 0, alors on « monte » sur la courbe en la parcourant de gauche à droite.
- Si m < 0, alors on « descend » sur la courbe en la parcourant de gauche à droite.

Méthode – Déterminer graphiquement l'expression d'une fonction affine

- On détermine l'ordonnée à l'origine p (c'est l'image de 0).
- On détermine le coefficient directeur m en regardant, sur la courbe, de combien d'unités on augmente ou on diminue lorsque l'on se déplace de 1 unité vers la droite.

Exemple.

Déterminer l'expression de la fonction affine dont la courbe représentative est la droite représentée ci-dessous.



Solution:

f est une fonction affine de la forme f(x) = mx + p.

- Graphiquement, on voit que f(0) = 2. Par conséquent, l'ordonnée à l'origine est p = 2.
- De plus, sur la courbe, lorsque l'on se déplace de 2 unités vers la droite, on se déplace d'une unité vers le bas. Cela signifie que lorsque l'on se déplace de 1 unité vers la droite, on se déplace de 0,5 unités vers le bas. Par conséquent, m = -0,5. Finalement, f(x) = -0,5x + 2.

Méthode – Déterminer, par le calcul, l'expression d'une fonction affine

- On traduit les coordonnées des points en terme d'images
- On détermine le coefficient directeur m à l'aide de la propriété 4.
- \bullet On détermine l'ordonnée à l'origine p à partir de l'une des deux images connues.

Exemple.

Soit A(1;2) et B(3;7).

Déterminer la fonction affine f dont la courbe représentative est la droite (AB).

Solution:

f est de la forme f(x) = mx + p.

Or, les points A et B appartiennent à la courbe représentative de f donc f(1) = 2 et f(3) = 7.

On a donc
$$m = \frac{f(3) - f(1)}{3 - 1} = \frac{7 - 2}{3 - 1} = \frac{5}{2}$$
.

Ainsi, f est de la forme $f(x) = \frac{5}{2}x + p$.

Comme f(1) = 2, on a:

$$\frac{5}{2} \times 1 + p = 2$$

Donc
$$p = 2 - \frac{5}{2}$$

Donc
$$p = -\frac{1}{2}$$
.

Finalement, f est la fonction définie par $f(x) = \frac{5}{2}x - \frac{1}{2}$.

3 Variations et signe d'une fonction affine

3.1 Variations d'une fonction affine

Proposition 5

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p.

• Si m > 0:

Lorsque x augmente, f(x) augmente également. Dans ce cas, on dit que la fonction est **croissante**.

• Si m < 0:

Lorsque x augmente, f(x) diminue.

Dans ce cas, on dit que la fonction est décroissante.

Exemple.

Déterminer les variations de la fonction définie sur \mathbb{R} par f(x) = -2x + 1.

Solution:

m=-2 donc m<0. La fonction affine f est donc décroissante.

3.2 Signe d'une fonction affine

Proposition 6

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p. On note x_0 la solution de l'équation f(x) = 0.

• Si m > 0:

Si $x < x_0$, alors f(x) < 0.

Si $x > x_0$, alors f(x) > 0.

On résume cela dans un tableau de signes :

x	$-\infty$		x_0		$+\infty$
f(x)		-	0	+	

• Si m < 0:

Si $x < x_0$, alors f(x) > 0.

Si $x > x_0$, alors f(x) < 0.

On résume cela dans un tableau de signes :

x	$-\infty$		x_0		$+\infty$
f(x)		+	0	_	

Démonstration.

Cette propriété découle directement des variations des fonctions affines. En effet, si m > 0, f est croissante et comme $f(x_0) = 0$, cela signifie que f(x) est positif « à droite de x_0 » et négatif « à gauche de x_0 ».

Inversement, si m < 0, f est décroissante. Par conséquent, f(x) est négatif « à droite de x_0 » et positif « à gauche de x_0 ».

Méthode – Étudier le signe d'une fonction affine

- Résoudre l'équation f(x) = 0
- \bullet Déterminer les variations de f pour en déduire le tableau de signes

Exemple.

Étudier le signe de la fonction affine f définie sur \mathbb{R} par f(x) = -3x + 2.

Solution:

• On résout f(x) = 0:

$$f(x) = 0$$

$$-3x + 2 = 0$$

$$-3x = -2$$

$$x = \frac{-2}{-3}$$

$$x = \frac{2}{3}$$

• m = -3 donc m < 0 et f est donc décroissante.

On en déduit le tableau de signes :

x	$-\infty$		$\frac{2}{3}$		$+\infty$
f(x)		+	0	_	

