

Chapitre 1 Nombres et ensembles de nombres

Table des matières

1	Ensembles de nombres	2
2	Relation entre les ensembles	5
3	Intervalles	6
4	Valeur absolue d'un nombre réel	8

1 Ensembles de nombres

Définition 1

L'ensemble des **entiers naturels** est l'ensemble des entiers positifs ou nuls : $0, 1, 2, \dots$ Il est noté \mathbb{N} .

Définition 2

L'ensemble des **entiers relatifs** est l'ensemble des entiers positifs ou nuls et des entiers négatifs : ..., -3, -2, -1, 0, 1, 2, Il est noté \mathbb{Z} .

Définition 3

L'ensemble des **nombres rationnels** est l'ensemble des nombres de la forme $\frac{a}{b}$ avec a qui appartient à \mathbb{Z} et b qui appartient à \mathbb{N} en étant différent de 0. Il est noté \mathbb{Q} .

Exemple. $\frac{5}{4}$ est un nombre rationnel.

Définition 4

L'ensemble des **nombres décimaux** est l'ensemble des nombres rationnels de la forme $\frac{a}{10^n}$ avec a qui appartient à \mathbb{Z} et n appartient à \mathbb{N} . Il est noté \mathbb{D} .

Exemple.

- $\frac{15}{100}$ est un nombre décimal.
- 5,677 est un nombre décimal car 5,677 = $\frac{5677}{1000} = \frac{5677}{10^3}$.

Proposition 1

Les nombres décimaux correspondent exactement aux nombres s'écrivant avec un nombre fini de chiffres après la virgule.

Démonstration.

- Supposons qu'un nombre x est un nombre décimal. Par définition, il existe des entiers a et n tels que $x = \frac{a}{10^n}$. Ainsi, x s'obtient à partir de a en décalant la virgule de n rang vers la gauche. Le nombre x n'a donc qu'un nombre fini de chiffres après la virgule.
- Réciproquement, supposons que x ne s'écrit qu'avec un nombre fini de chiffres après la virgule noté n. En multipliant x par 10^n , on obtient un nombre entier que l'on note a. Ainsi, $x \times 10^n = a$ et donc $x = \frac{a}{10^n}$.

Proposition 2

 $\frac{1}{2}$ n'est pas un nombre décimal.

Remarque. Le fait que $\frac{1}{3} \simeq 0.3333333...$ et qu'il semble avoir un nombre infini de chiffres après la virgule n'est pas une preuve que $\frac{1}{3}$ n'est pas un nombre décimal. C'est simplement une conjecture et, a priori, le fait qu'il ait un nombre infini de chiffres après la virgule n'est pas évident. Au contraire, c'est en montrant que $\frac{1}{3}$ n'est pas un nombre décimal que l'on pourra en déduire que son écriture décimale est infinie.

Démonstration.

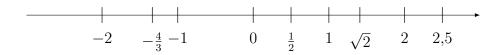
On suppose par l'absurde que $\frac{1}{3}$ est un nombre décimal. Ainsi, il existerait des entiers $a \in \mathbb{Z}$ et $n \in \mathbb{N}$ tels que $\frac{1}{3} = \frac{a}{10^n}$.

On en déduirait que $3a = 10^n$.

Cela signifierait donc que 10^n est un multiple de 3. Comme cela n'est pas le cas, c'est que notre hyptohèse de dépârt est fausse. Autrement dit, $\frac{1}{3}$ n'est pas un nombre décimal.

Définition 5

L'ensemble des **nombres réels** est l'ensemble de tous les nombres connus en classe de seconde. Il est noté \mathbb{R} . Par ailleurs, tout nombre réel est représenté par l'abscisse d'un point sur la droite numérique.



Proposition 3 – (admise)

Il existe des nombres réels qui ne sont pas des nombres rationnels.

Par exemple, $\sqrt{2}$ et π ne pas des nombres rationnels.

On dit que ce sont des nombres irrationnels.

Tableau récapitulatif des ensembles de nombres

Nom	Symbole	Exemples
Ensemble des entiers naturels	N	0;1;2;
Ensemble des entiers relatifs	Z	$\ldots -3; -2; -1; 0; 1; 2; 3; \ldots$
Ensemble des nombres décimaux	D	-5 ; 2,5; $\frac{3}{2}$; $\frac{-1}{5}$
Ensemble des nombres rationnels	Q	$45; -\frac{5}{2}; 15,6; \frac{4}{3}; \frac{15}{7}; \dots$
Ensemble des nombres réels	\mathbb{R}	$0; -18,7; \frac{45}{17}; \sqrt{2}; \sqrt{5}; \pi; \dots$

Définition 6

- Un ensemble E privé d'une valeur a se note $E \setminus \{a\}$.
- Un ensemble privé de la valeur 0 se note $E \setminus \{0\}$ ou encore E^* .
- L'ensemble vide est l'ensemble ne contenant aucun élément. Il est noté \emptyset .

Exemples.

- $\mathbb{N} \setminus \{3\}$ désigne l'ensemble de tous les nombres entiers naturels sauf 3.
- \mathbb{R}^* désigne l'ensemble tous les nombres réels sauf 0.
- \mathbb{Q}^* désigne l'ensemble de tous les nombres rationnels sauf 0.

2 Relation entre les ensembles

Définition 7

- Si un nombre x appartient à un ensemble E, on note $x \in E$.
- Si un nombre x n'appartient pas à un ensemble E, on note $x \notin E$.
- Soient E et F des ensembles. Si pour tout $x \in E$, on a $x \in F$, on dit que E est inclus dans F. On note $E \subset F$.

Exemples.

- $\frac{2}{3} \in \mathbb{Q}$ mais $\frac{2}{3} \notin \mathbb{Z}$.
- $-7 \in \mathbb{Q} \text{ car } -7 = \frac{-7}{1}$. $\mathbb{N} \subset \mathbb{Z} \text{ car si } x \in \mathbb{N} \text{ alors } x \in \mathbb{Z}$.
- $\mathbb{Z} \subset \mathbb{Q}$ car si $x \in \mathbb{Z}$, on peut toujours écrire $x = \frac{x}{1}$, ce qui prouve que $x \in \mathbb{Q}$.

Proposition 4

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$

Démonstration.

- $\mathbb{N} \subset \mathbb{Z}$ est évident car si x est un entier positif alors c'est un entier relatif (positif ou négatif).
- Montrons que $\mathbb{Z} \subset \mathbb{D}$. Soit $x \in \mathbb{Z}$. Alors $x = \frac{x}{10^0}$ donc $x \in \mathbb{D}$. Cela prouve donc que $\mathbb{Z} \subset \mathbb{D}$.
- Montrons que $\mathbb{D} \subset \mathbb{Q}$. Soit $x \in$ Alors il existe $a \in \mathbb{Z}$ et $\in \mathbb{N}$ tel que $x = \frac{a}{10^n}$. Cela signifie que x s'écrit bien comme une fraction de nombres entiers et donc que $x \in \mathbb{Q}$.
- $\mathbb{Q} \subset \mathbb{R}$ est évident car \mathbb{R} correspond à l'ensemble de tous les nombres.

 $\sqrt{2}$; $\sqrt{5}$; π $\frac{1}{3}$; $\frac{3}{7}$; $\frac{1}{19}$.. \mathbb{R} $3,5;0,34;\frac{3}{4}$ \mathbb{D} 0;1;2;...

5

3 Intervalles

Définition 8

Un intervalle est un sous-ensemble de $\mathbb R$ correspondant à l'une des neuf formes suivantes :

Encadrement	Intervalle	Représentation sur la droite graduée
$a \leqslant x \leqslant b$	[a;b]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$a \leqslant x < b$	[a;b[
$a < x \leqslant b$	$\left]a;b ight]$	
a < x < b	$\big]a;b\big[$	
$x \geqslant a$	$[a; +\infty[$	
x > a	$]a;+\infty[$	
$x \leqslant a$	$]-\infty;a]$	######################################
x < a	$]-\infty;a[$	######################################
$x \in \mathbb{R}$	$\left]-\infty;+\infty\right[=\mathbb{R}$	<i>////////////////////////////////////</i>

Définition 9

Soient I et J deux intervalles.

- L'intersection de I et de J, notée $I \cap J$, est l'ensemble des nombres appartenant à la fois à I et à J.
- La **réunion** de I et de J, notée $I \cup J$, est l'ensemble des nombres appartenant à I ou à J.

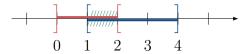
Remarque.

En mathématiques, « appartenir à I \mathbf{ou} à J » signifie « appartenir à l'un des deux ou aux deux ».

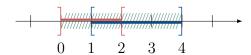
Exemples.

Si I = [0; 2[et J = [1; 4] alors :

•
$$I \cap J = [1; 2[$$



•
$$I \cup J =]0;4]$$



4 Valeur absolue d'un nombre réel

Définition 10

Soit $x \in \mathbb{R}$. La valeur absolue de x est notée |x| et définie par :

$$|x| = \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x < 0 \end{cases}$$

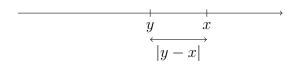
Exemple.

- $|2| = 2 (car 2 \ge 0);$
- |-2| = -(-2) = 2 (car -2 < 0).

Proposition 5

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

- La distance entre x et 0 est |x|.
- La distance entre x et y est |y x|.



Démonstration.

- La distance entre x et 0 est x ou -x selon si x est positif ou négatif. C'est, par définition, la valeur absolue de x.
- La distance entre x et y est y-x si $y\geqslant x$ et x-y si $x\geqslant y$. Dans tous les cas, il s'agit bien de la valeur absolue |y-x| car x-y=-(y-x).

Savoir-faire du chapitre

- Connaître les ensembles de nombres et en donner des exemples.
- Connaître et savoir utiliser les relations entre les ensembles de nombres.
- Associer à chaque point de la droite graduée un unique nombre réel et récirpoquement.
- Représenter un intervalle sur la droite graduée. Déterminer si un nombre appartient à un intervalle ou non.
- Utiliser la valeur absolue.

