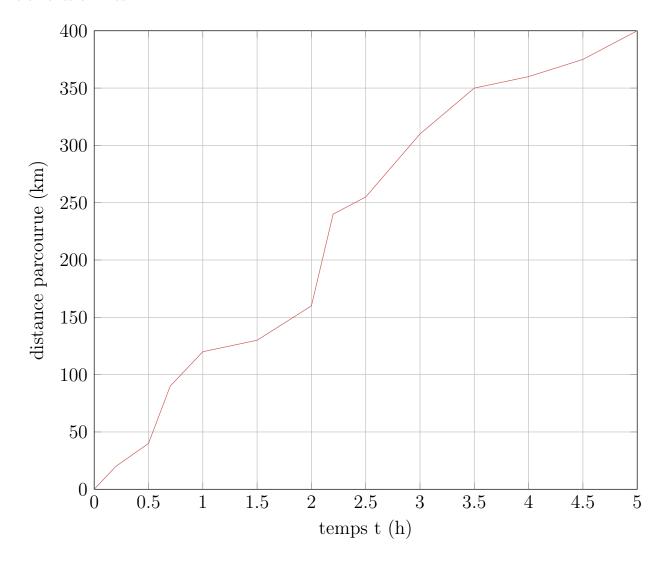
Nombre dérivé et fonction dérivée Activités d'introduction

Activité 1 – Nombre dérivé et vitesse

Objectif: Comprendre comment on peut modéliser une vitesse.

Un automobiliste effectue un trajet de 400 km en 5 heures. En enregistrant les positions GPS de la voiture, on a reproduit ci-dessous la courbe donnant la distance parcourue en fonction du temps. A quel moment du trajet la voiture était-elle la plus rapide? Justifier en donnant des éléments chiffrés.



Bilan

D'un point de vue graphique, à quoi correspond la vitesse calculée?

Activité 2 – Nombre dérivé

Objectif : Comprendre comment déterminer graphiquement le coefficient directeur de la tangente à une courbe.

À l'aide du logiciel Geogebra, tracer la courbe de la fonction f définie par $f(x) = x^2$. Placer ensuite les points A et B appartenant à la courbe et d'abscisses respectives 1 et 3 puis tracer la droite (AB). En utilisant l'outil **pente**, demander à Geogebra de déterminer le coefficient directeur de la droite (AB).

- 1. Quel est le coefficient directeur de la droite (AB)?
- 2. Déplacer le point B sur la courbe afin qu'il se rapproche du point A. Vers quelle valeur le coefficient directeur se rapproche-t-il?

Bilan

Si on appelle **tangente** à la courbe au point A la droite épousant le mieux la courbe au voisinage de A, décrire le procédé permettant de déterminer le coefficient directeur de cette tangente.

Activité 3 – Histoire de la dérivation

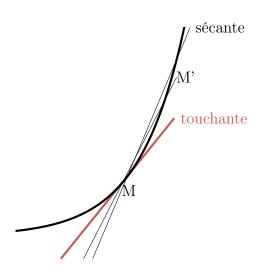
Objectif : Comprendre l'évolution historique de la théorie de la dérivation.

Document 1.

Il comprit ce que, plus de trois siècles plus tôt, Fermat avait compris : un arc infiniment petit d'une courbe peut être assimilé au segment correspondant de la touchante. [...] Une touchante? C'est la limite d'une sécante lorsque les deux points M et M' où elle coupe la courbe « se rapprochent indéfiniment l'un de l'autre ».

Toucher n'est pas couper! Il dessina une touchante. Il se passait en mathématiques l'inverse de ce qui se passait dans la vie : on commença par le « rentre-dedans » de la sécante pour finir avec le « flirt » de la touchante. Mieux, le second était le résultat de l'abandon progressif du premier. Belle figure de l'érotisme.

Extrait du roman Le théorème du Perroquet, Denis Guedi, Editions du Seuil, 1998, p.450.



Document 2.

Le cheminement de la pensée mathématique dans cette création du calcul infinitésimal au XVIIème siècle a été lent, tortueux et confus. Dans l'expression $\frac{1}{h_n}((x+h_n)^m-x^m)$, le numé-

rateur et le dénominateur deviennent tous deux 0 lorsque l'on prend $h_n = 0$ et l'expression $\frac{6}{0}$ n'a pas de sens. Les mathématiciens pensent s'en tirer en parlant comme Leibniz « d'infiniment petits », ou comme Newton, de « dernières raisons de quantités évanouissantes », ce qui ne fait que masquer par des mots l'imprécision des idées. [...]

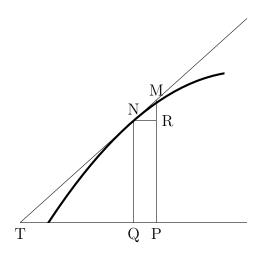
Newton [parle de] fluxion de la fonction y = f(x) (qu'il appelle « fluente ») [et] il note \dot{y} . Leibniz, de son côté, écrit $\frac{df}{dx}$. Extrait de Pour l'honneur de l'esprit humain, Jean Dieudonné, Hachette, 1987, p.75.

Document 3.

Isaac Barrow (1630-1677), le prédecessur d'Isaac Newton à la chaire de mathématiques de l'Université de Cambridge, souhaite dans ses cours revenir au point de vue géométrique et à la rigueur euclidienne. Il développe une méthode des tangentes « par le calcul » qui est plus générale que celle de Fermat et qui s'approche davantage encore des procédés modernes.

 $=\frac{\hat{MP}}{TP}$ à cause de la similitude des triangles MRN et MPT. [...] La proportion permet [ensuite] de calculer la longueur de la sous tangente TP.

Extrait de Une histoire des mathématiques, routes et dédales, Amy Dahan-Dalmedico et Jeanne Peiffer, Editions du Seuil, 1986, p.187.



- 1. Quelle est l'idée de « touchante » mentionnée dans le document 1?
- 2. D'après les documents, quels sont les concepts ou les notations qui ont évolué au cours de l'histoire. Quel(s) problème(s) s'est notamment posé(s)?
- 3. Dans le document 3, à quel théorème la phrase suivante fait-elle référence : « $\frac{MR}{NR} = \frac{MP}{TP}$ à cause de la similitude des triangles MRN et MPT »?

Bilan

Est-il possible d'attribuer l'invention du calcul infinitésimal à un mathématicien et de dater cette invention de manière précise?

Activité 4 – Formules pour calculer un nombre dérivé

Objectif : Déterminer des formules pour rendre le calcul des nombres dérivés plus pratique.

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.
 - (a) Calculer les nombres dérivés f'(a) pour différentes valeurs de a.
 - (b) Conjecturer une formule donnant f'(a) en fonction de a.
 - (c) Démontrer cette conjecture.
- 2. Soit g la fonction définie sur \mathbb{R}^* par $g(x) = \frac{1}{x}$. Déterminer et démontrer une formule donnant g'(a) en fonction de a.
- 3. Soit h la fonction définie sur \mathbb{R}^* par $h(x) = 5x^2 4x + 2$. Déterminer et démontrer une formule donnant h'(a) en fonction de a.

Bilan

Rappeler les trois formules démontrées dans cette activité.

